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The universal equilibrium spectra of turbulent 
velocity and scalar fields 

By C. H. GIBSON AND W. H. SCHWARZ 
Department of Chemical Engineering, Stanford University, Stanford, California 

(Received 30 July 1962 and in revised form 17 January 1963) 

Kolmogoroff’s (1941) theory of local isotropy and universal similarity predicts 
that all turbulent velocity spectra are reducible to a single universal curve for 
the highest wave-numbers and that under certain conditions dimensional analysis 
may be used to predict spectral shapes. Identical arguments predict that the fine 
structure of conserved dynamically passive scalar fields mixed by turbulence will 
also be universally similar. 

A single-electrode conductivity probe in a bridge circuit was used to measure 
the spectra and decay of a random homogeneous field of concentration and 
temperature behind a grid, and a Lintronic constant-temperature hot-film 
anemometer was used to measure the decay of velocity field. These experimental 
measurements of absolute turbulent velocity, temperature, and concentration 
spectra in salt water are here compared with the general predictions of universal 
similarity and local isotropy theories, as well as a prediction by Batchelor (1959) 
of the exact large wave-number spectral form for scalar mixing at high Schmidt 
number (v D) .  The spectral shapes are found to have the predicted similarity 
forms, and the data are consistent with Batchelor’s predicted spectrum of the 
scalar field. 

~~ ~~~~ ~ ~ 

1. Introduction 
It was proposed by Kolmogoroff (1941) that, a t  sufficiently high Reynolds 

number, statistical parameters describing the fine structure of fluids in turbulent 
flow, such as the velocity spectrum at high wave-number, should become 
universal when the co-ordinates are transformed with length and time scales 
based on two parameters of the flow field: E ,  the rate of viscous dissipation of 
turbulent kinetic energy; and v, the kinematic viscosity of the fluid. According 
to the theory, small eddies are formed by the interaction of large eddies gen- 
erated in the creation of the turbulence, but become statistically independent of 
the directional details of the large eddies, or ‘locally isotropic’, as their sizes 
decrease. 

Kolmogoroff’s first similarity hypothesis predicts universal fine structure after 
co-ordinate transformation to length scale 7 = (v3/s)$ and time (r = (v/e)*. His 
second similarity hypothesis is concerned with an intermediate ‘inertial ’ range 
of eddies with structure independent of kinematic viscosity as well as direction. 
Fourier energy-spectrum functions should be proportional to wave-number to 
the - Q power as a consequence of Kolmogoroff’s second hypothesis. These ideas 
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are well described by Batchelor (1953) who treats the universal equilibrium of 
velocity spectrum functions whereas Kolmogoroff’s discussion was in terms of 
product moments of velocity differences, or ‘ structure functions ’ of the velocity 
field. Batchelor (1953) demonstrated the equivalence of universal-similarity 
hypotheses applied to either the structure function or the spectrum function. 

Equivalent notions may be applied to the fine structure of scalar fields (such 
as concentration or temperature) mixed by a turbulent velocity field. In this 
case, two more parameters are required besides E and v: x, the rate of dissipation 
of scalar variance by diffusion, and D, the molecular diffusivity of the scalar 
fluid property (with units of length2/time). Corrsin (1951) and Obukoff (1949) 
independently predicted a scalar inertial subrange, equivalent to the velocity 
inertial subrange of Kolmogoroff~s second hypothesis, where the scalar variance 
spectrum is proportional to the wave-number to the -$ power. For weakly 
diffusive scalars (D/v < l),  Batchelor (1959) succeeded in extending the con- 
sequences of local isotropy and universal similarity to obtain an exact equation 
for the equilibrium scalar spectrum at very high wave-numbers by integrating 
the linear scalar diffusion equation for a typical small scalar Fourier element in 
pure strain. Corrsin (1961) applied local isotropy and Batchelor’s procedure 
(D/v  < 1) to obtain the spectral form for the reactant concentration in turbulent 
mixing with a first-order reaction. 

The validity of Kolmogoroff’s hypotheses has been challenged by Kraichnan 
(1959), who employed a ‘ direct-interaction approximation ’ to predict an inertial 
subrange for the velocity spectrum with slope - # rather than - Q (on a log-log 

The purpose of this paper is to present the results of some absolute measure- 
ments of velocity and scalar spectra for comparison with the general predictions 
of local-isotropy and universal-similarity theory, as well as with Batchelor’s 
predicted spectrum of a scalar field with Schmidt number 9 1. In addition to 
the spectral measurements, the law of decay of the scalar variance has been 
obtained for the range of variables encountered in the present work; namely, 
grid turbulence in the initial period a t  grid Reynolds numbers from 10,000 to 
70,000, concentration and temperature mixing in dilute salt water for two grid 
mesh sizes. For a complete discussion, see Gibson (1962). 

plot). 

2. Experiment 
A schematic diagram of the experimental equipment is shown in figure 1 .  

Dilute salt water is circulated in a closed-loop water tunnel through the test 
section where measurements of the velocity and scalar fieIds are made with 
suitable detection equipment. Velocity fluctuations are damped by a set of 
Screens and a nine-to-one area contraction before the grid. A biplane grid of 
perforated tubes which generates the velocity field also generates the scalar 
fields by the injection of concentrated or heated salt solution through small holes 
drilled in the tubes. Make-up water was added during concentration injection 
to  maintain a, constant background concentration. 

Before a run, the tunnel was filled with demineralized water from a 1000 gallon 
reservoir located next to the water tunnel. During the run, this tank served as 
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the source of make-up water which was introduced into the system upstream of 
the main pump. Since the temperatures of the liquid in the tunnel and the 
make-up water were very nearly the same, and since a degree of mixing was 
achieved by the pump and subsequent screens in the calming section, it was 
found that during a concentration-mixing run, the temperature fluctuations 
seen by the probe were insignificant compared to the signal produced by the 
sa.Iinity fluctuations. An experiment was performed to view the fluctuations or 
'noise' seen by the probe when no salt water was injected through the grid but 
with make-up water flowing into the system. The output voltage for that case 
was well below that of the main signal. No make-up water was added during 
the temperature mixing runs. 

A.C. 
bridge 
circuit 

Circuit 

line 

(concentrated or heated) 
mesh 

A C ' ( f ) ,  AC2 
FIGURE 1. Schematic diagram of experimental equipment. 

Velocity fluctuations were detected with a Lintronic constant-temperature 
hot-film anemometer (Ling 1955) in place of the A.C. bridge shown in figure 1, 
and the mean square and mean power spectrum were measured directly with 
the analogue equipment shown, The probe was in the form of a 30" wedge on 
each side of which a platinum film about 1 x 0.2 mm, 2 x cm thick and with 
a resistance of about 20 Q. A Hewlett-Packard 302 A heterodyne wave analyser 
with a bandwidth (area under power transfer function) of 6.10 CIS, was used to 
measure power spectra. The means of fluctuating output signals of the wave 
analyser and the Ballantine 320 R.M.S. meter were evaluated using an analogue 
averaging circuit with time constant adjustable from 2 sec to 30 min. 

Since conductivity of salt water is a function of both concentration and tem- 
perature, both temperature and concentration fluctuations could be detected 
with conductivity probes such as that shown in figure 2 (a) ,  plate 1. The shielded 
lead from the A.C. bridge is connected to a 0.010 in. platinum lead running through 
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the $in. glass tube to the 10 p electrode wire in the cast epoxy tip shown in figure 
2(b) ,  plate 2 .  Before use, this tip musb be sharpened and platinized under a 
microscope since it was somewhat rounded by polishing. Its operation depends 
on the fact that the resistance between the electrode and the grounded tunnel 
wall is determined primarily by the resistivity of the solution a t  the electrode 
surface. Fluctuations in the resistivity of the solution near the probe tip generate 
a carrier-suppressed amplitude- modulated signal across the balanced A.C. 

bridge circuit which is suitably demodulated to give a proportional electrical 
signal. The mixing signal is analysed for mean square and power spectrum in the 
same manner as the velocity signal. A complete description of the development 
of the measurement technique is given by Gibson & Schwarz (1963). 

The A.C. bridge was a Tektronix Type Q Transducer and Strain Gage plug-in 
unit in a Model 531A oscilloscope. The carrier frequency of the bridge was 
25 kc/s, limiting the signal frequencies to less than 6 kc/s. The noise level over 
the band width ( 2  CIS-6 kc/s) of the circuit was equivalent to an R.M.S. concen- 
tration fluctuation c‘/C of 0.003% or an R.M.S. temperature fluctuation t‘ of 
0.001 “C. 

One way of testing the predictions of Kolmogoroff’s similarity hypotheses for 
the velocity field is to measure absolute one-dimensional power spectra $(kl) 
under conditions of known dissipation rate e) where 

in decaying homogeneous isotropic turbulence, and 

- 
Q(kl) dk, = u2. 

According to the first similarity hypothesis, high wave-number spectra plotted 
as $(k,) ktu/c  versus k,/ks should be universal, The symbol ks = 117 = (e/v3)% is 
called the Kolmogoroff wave-number and is often used to represent the location 
of the viscous region of the spectrum. Present indications are that the viscous 
cut-off occurs at approximately k = O.lks. Kolmogoroff’s second similarity 
hypothesis predicts an inertial subrange of the normalized spectrum with slope 
-$ on a log-log plot for turbulence at sufficiently high Reynolds numbers. It 
is often stated that laboratory turbulence cannot be produced at high enough 
Reynolds number to  exhibit any such subrange. 

Local-isotropy and Kolmogoroff-like similarity hypotheses applied to the 
spectra of weakly diffusive scalar fluid properties may be tested by measuring 

the one-dimensional scalar spectrum $o(kl) (where &(k,) dk, = @) under 

conditions of known dissipation rates for both the turbulent kinetic energy and 
scalar variance. Arguments similar to the first similarity hypothesis predict 
that high wave-number spectra of weakly diffusive scalars become universal 
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where D is the diffusivity of the scalar fluid property. When D is much smaller 
than v, it  may be shown (Batchelor 1959) that a universal viscous-convective 
subrange should exist where 

In addition, arguments equivalent to the second similarity hypothesis predict 
(Corrsin 1951; Obukhoff 1949) a scalar inertial subrange at  high Reynolds 
numbers where the spectrum q58(kl) k: vjx versus k,jks should be universal with 
q50(Icl) proportional to l q g .  Thus, local isotropy, similarity hypotheses, and 
Batchelor's scalar spectrum may be tested by measuring $(iQ and q50(k,) under 
known conditions of c,  X ,  v and D. 

3. Velocity-field results 
A co-ordinate transformation to length and time scales and n should convert 

turbulent spectra $(I%,) to a universal function $e(k i )  for high wave-numbers 
according to Kolmogoroff's first hypothesis. That is 

where r/ = (v3/e)*, (T = (v/c)4, and the primed quantities are in the prime co- 
ordinate system x:. = x / ~ ,  t' = t jn .  

Using the hot-film anemometer, three measurements were made of $(k,) 
behind the 1.59 cm mesh grid corresponding to mesh distances of 80, 40 and 20, 
grid Reynolds numbers of about 20, 30 and 40 thousand, and Kolmogoroff 
wave numbers of 40, 90 and 170cm-l, respectively. Dissipation rates were 
computed by differentiating the linear decay law determined by Batchelor & 
Townsend (1 948) behind geometrically similar grids (mesh-to-rod-diameter 
ratio 16 : 3) using hot-wire anemometers, viz. 

U2/u" = 1 3 5 [ ~ / M -  101, ( 2 )  

where U is the mean velocity, u is the downstream fluctuating component of 
the velocity, x is the distance from the grid, and M is the mesh length or spacing 
of the round grid bars (see figure 1). Using x = Ut, ( 2 )  may be differentiated to 
give the rate of decay of turbulent kinetic energy as a function of distance 

3 d  - 
2 dt 

behind the grid 
8 = ---[u2(t)] = (3) 

From (3) the Bolmogoroff scales T and n may be found by the following relations 

T = 3*08M( U M / V ) - )  (x/M - lo)-&, CT = y2/v, (4) 

to permit scaling of the spectra to universal form by equation (1) .  
The normalized velocity spectra taken in the water tunnel are plotted in 

figure 3, along with several normalized spectra measured behind geometrically 
similar grids in wind tunnels by Stewart & Townsend (1951) and a spectrum 
published recently by Grant, Stewart & Moilliet (1962) measured in a tidal 
channel. There have been no corrections for finite length of probe applied to the 

24 Fluid Mech. 16 
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spectra measurements. An analysis similar to that of Uberoi & Kovasnay (1953) 
for a finite hot-wire does not appear to be readily extended to the geometry of 
the hot-film. However, from the uncorrected data in figure 3, the correction for 
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kl lk, 
FIGURE 3. Normalized velocity spectra. 

finite length of the hot-film should be very similar to that for the hot-wire since 
the data appear to be similar. The Stewart & Townsend spectra were computed 
from published measurements of the spectra of the first and second derivatives 
of the velocity fluctuations. The dissipation rates were calculated by Stewart 
& Townsend using (3). The Grant, Stewart & Moilliet (GSM) spectrum was 
normalized using their published values of e and Y. It was obtained from their 
longest continuous tape recording (15 min)of the velocity signal (09.05,3. x. 1959). 

The agreement of the high wave-number ranges of all the spectra is quite good, 
providing evidence for the validity of Kolmogoroff’s first similarity hypothesis. 
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The last two points of the ocean spectrum are somewhat higher than the universal 
spectrum indicated by the grid-turbulence data in water and air, but this may 
be attributed to noise by inspecting other ocean spectra at higher wave-numbers 
where the influence of noise is apparent (GSM, p. 256, figure 12). 

The choice of the parameter 8 to characterize the dependence of the fine 
structure of the velocity field on the large structure was predicated on the notimi 
that the turbulent kinetic energy generated at low, anisotropic wave-numbers is 
transferred undiminished to the high, isotropic wave-numbers where it is degraded 
to heat by the viscous forces. Clearly, this representation can be strictly correct 
only under conditions of high Reynolds number. The basic notion that the fine 
structure of turbulence will be independent of the details of the large structure 
should be valid even a t  low Reynolds numbers, but to normalize such a spectrum 
to the universal curve shown in figure 3, the proper dissipation rate would be 
the value corresponding to an infinite Reynolds-number flow system with the 
same high wave-number spectrum as the actual flow, rather than the true dis- 
sipation rate. Hence, since true dissipation rates were used to normalize the low 
Reynolds-number flows of figure 3 rather than rates computed, say, from the 
spectrum obtained by extrapolating the actual spectrum according to the GSM 
curve, the good agreement of the high wave-numbers curves for high and low 
Reynolds-number flows in figure 3 might seem contradictory to local-isotropy 
theory. The contradiction is resolved, however, by examining the dissipation 
spectrum of the universal curve (Stewart & Townsend, p. 370, figure 5) and the 
fact that the normalization factors only depend on 8 to the one-fourth power. 
Hence, as long as the ‘energy-containing eddies’ have wave number less than 
about 0.2ks, the ‘low Reynolds number ’ correction to the normalized spectrum 
will be negligible. 

At lower wave numbers, the low Reynolds-number spectra begin to depart 
from the universal, infinite Reynolds-number curve. At a given grid Reynolds 
number, the normalized spectra for different xIM values apparently coincide, 
indicating self-preservation. The water and air grid spectra at the same Reynolds 
number agree at  high and low wave-number but disagree somewhat near the 
intersection with the universal curve. The difference might be due to the differ- 
ence in wave analyser bandwidths, since the ratio of bandwidth to intersection 
frequency for the water data was one-sixth, compared to one-half for the air data. 

As the Reynolds number of the turbulence increases, the spectra exhibit 
increasing universal portions, departing asymptotically from the same inertial 
subrange curve of slope - Q predicted by Kolmogoroff’s second hypothesis. 
The data of Grant, Stewart & Moilliet, taken at a Reynolds number based on the 
depth of their tidal channel of lo8, exhibit several decades of the spectrum with 
this slope. The regularity of the data is quite adequate to distinguish between 
slopes of - + and - #, supporting Kolmogoroffs theory rather than Kraichnan’s. 
The fact that a portion of the water-tunnel spectrum at grid Reynolds number 
38,300 is somewhat higher than the rest of the data is attributed to a temporary 
change in the hot-film sensitivity, since none of the other spectra exhibit the 
peculiar humped shape which has to be drawn if this portion of the spectrum is 
believed. With this interpretation, the asymptotical -p slope line shown in 

24-2 
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figure 3 was drawn for the grid-turbulence spectra corresponding to a universal 
one-dimensional Kolmogoroff constant ’a, = 0.44 k 0.02 for the grid-turbulence 

( 5 )  
data, where a1 is defined by $e(k i )  = alk;-% 

in the inertial subrange. This may be compared to a value of about 0-5 for the 
ocean spectrum shown in figure 3 and average values of 0.47 k 0.02 and 0.424 
published by Grant, Stewart & Moilliet in different reports of their measurements 
( 1962, 1960, respectively).-/- The corresponding three-dimensional Kolmogoroff 
spectrum constant a3, defined by 

~ ’ ( l c ’ )  = ~ ( k )  g 3 / 7 2  = a,(k+ (6) 

The constant values approached by the one-dimensional grid spectra as k, 
may be shown to be 55/18a,; thus a3 = 1.34 2 0.06. 

approaches zero may be shown to be 

$(O) = 2n-’GA, (7) 

where A is the longitudinal integral scale r )  dr ;  and IOrnf( 
f ( r )  = u,(x) u,(x + r)/?. 

If we define the wave-number k, corresponding to the intersection of 

$(k,) = 2n-lU2A 

with the universal inertial subrange line, then we can show that 

k, = kS(0.44~/2R,RA)%, (8) 
where R, = ur7/v and R,  = u’A/v. Since the beginning of the viscous subrange 
occurs at kl/k8 = 0.1, an inertial subrange can exist in a particular flow only if 
it is possible to find (normalized) wave numbers k; that lie between k; and 0.1, 
that is, only if k; < 0.1. Thus a criterion for the existence of an inertial subrange is 

RA >> 567, (9) 

since R, = 0.43Ra, RA = u’h/i) and R, and R, may be approximated by (Batchelor 
& Townsend 1948) R, A 0.1R2,. 

4. Universal equilibrium hypotheses for the scalar field 
The notions of local isotropy and Kolmogoroff-like similarity hypotheses for 

the structure of weakly diffusive scalar fields mixed by turbulent velocity fields 
may be supplemented by the arguments furnished by Batchelor (1959). Batchelor 
recognized that when D/v 4 1, fluctuations of a scalar fluid property 0 may 

t Editors’ note. As remarked in the text, the value of the Kolmogoroff constant given 
by Grant, Stewart & Moilliet in their 1962 paper ( J .  F k i d  Mech. 12,241) differs from that 
given in their 1960 unpublished report (Pac. Nav. Lab., Report 60-8). These authors have 
informed the editors that the results given in the 1960 report were calculated with an 
incorrect value of the kinematic viscosity, and t,hat this report should be regarded as super- 
seded by the paper published in 1962. 
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exist a t  a much finer scale than fluctuations of velocity. Hence, the smallest 
scalar fluctuations will be convected by pure strain, since it is very unlikely that 
they will find themselves in a region of the fluid where the velocity fluctuations 
in space are as frequent as the fluctuations of the scalar. Through the analysis 
of the history of a single high wave-number Fourier element of the scalar field 
in pure strain, Batchelor showed that the most important quantity in the con- 
vection is the value of the least principal rate of strain y of the strain tensor 
eij, where 

( i , j  = 1,2,3). 

When the co-ordinates are transformed to the  ‘principal axes’ 

where the x,-axis has been chosen to coincide with the direction of the principal 
axis of the least strain y, which is necessarily negative by continuity since 
eii = 0 = a: + p + y for an incompressible fluid. 

By assuming that the scalar field at high wave-number was under the influence 
of the same least principal rate of strain, Batchelor was able to  predict the 
following equation for the equilibrium three-dimensional scalar spectrum func- 
tion r ( k )  

where k is the wave-number magnitude, r ( k ) d k  = @, 8(x,t) = 0, and y 

denotes the effective average least principal rate of strain of the velocity field. 
Batchelor further suggested that the effective value of y would be - & ( ~ / v ) l ,  
giving a definite expression for the high wave-number spectrum 

sd” 

which for future reference may be written 

r ’ ( w )  = r ( k )  kzv/x(D/v)* = (2/o)exp ( -2w2) ,  (12) 

where w = (D/u)* k/ks.  
The mixing problem may be considered in terms of Kolmogoroff-like similarity 

hypotheses. A dynamically passive, conserved, scalar fluctuation field B(x, t), 
such as concentration or temperature, generated at a large scale by some 
external agency, is mixed by the turbulent velocity field u(x,t) according to 

(13) 
the equation 

a2e ae ae Z + U ~ -  = D- axi aXjax,’ 
where ui = B = au,/ax, = 0,  and D < v. 
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The similarity hypothesis for fluctuations of size intermediate between the 
viscous scale of the velocity field and the diffusive scale of the scalar field 
should be: 

Scalar fluctuations smaller than the viscous scale of the turbulent velocity 
field should approach a unique statistical equilibrium determined by the 
parameters x ,  y and D .  

By hypothesis, a co-ordinate transformation to length, scalar and time scales 
formed from the parameters x ,  y and D should collapse all scalar spectra at high 
wave-numbers to a universal form : possibly that predicted by Batchelor with 
equation (12). The only possible combinations of the parameters are the scales 

length I = (D/y)+,) 
time T = y-11, 
scalar C = (x/y)*.  I 

Now, performing the co-ordinate transformation 

6‘ = 6lZ, t‘ = t / T ,  L’ = LIZ, (15) 
we obtain from the one-dimensional scalar spectrum $e(kl, t ) ,  the universal 
spectrum $se( k;) by the similarity hypothesis 

Assuming that the rate-of-strain parameter y depends only on B and v, we 
may use for y the only combination of these quantities with the proper units; 
that is, y (e/v)*. Equation (16) then becomes 

which may be compared to (12). 
If the diffusion and viscous wave-numbers are widely separated, there should 

exist a range of wave-numbers which are independent of the diffusivity D and 
depend only on y and x .  As pointed out by Batchelor (1959), this requires that 

the particular form (10) reduces to (18) when k < ( y / D ) ) .  
Corrsin (1951) and Obukhoff (1949) independently predicted the existence of 

a scalar inertial subrange for mixing systems with very high Reynolds number, 
where the scalar spectrum is independent of both D and 17 and depends only on 
E and x. 

The indicated spectrum 
#e(ki, t )  lC,3 V / X  = P i ( k i / W ‘  (19) 

is valid for all scalars, even those with D > v.  
The results of the similarity hypotheses given by equations (19), (18) and (17) 

are summarized graphically in figure 4, where the normalized universal equi- 
librium spectra are shown plotted as (Pek;v/x versus kl/ks in figure 4(a)  to 
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illustrate the universal scalar inertial and viscous-convective subranges. Figure 
4 ( b )  is a plot of 

illustrating the universal viscous-convective and diffusive subrangee. The 
spectra shown are for three scalars with different diffusivities, all small compared 
to the kinematic viscosity of the fluid, mixed at large Peclet number Lu'lD, 
where L is the length scale of the largest scalar fluctuation, and with the assump- 
tion that the rate-of-strain parameter necessary to produce similarity is (e/v)*. 

FIGURE 4. Universal scalar spectra at high Schmidt number: ( a )  inertial and 
viscous-convective subranges; ( b )  viscous-convective and diffusive subranges. 

5. Decay of the scalar field 
From figure 4, it is apparent that to normalize properly measured spectra of 

scalar mixing, it is necessary to know the dissipation rate of 0-variance. In  
general, x is -2D8(a28/axiaxi); however, for a decaying system this becomes 
-d@/dt. Hence, x may be measured by differentiating the scalar decay law 
equivalent to the linear decay law for the turbulence, equation (2)) found by 
Batchelor & Townsend (1948). 

Figure 5 shows the decay of 3 with distance x/M from the grid, where 
C(t) = + c ( t )  is the salt concentration at the probe tip. An initial value of (s)* 
is plotted since it may be shown (Gibson 1962, p. 142) that it  will be greater 
than c,,, the known increment in mean concentration across the grid. The con- 
ditions of the test are shown on the plot, where Re, = UM/iJ ,  e is the average 
concentration in the test section, and C, is the concentration of the solution 
injected through the grid. Measurements such 8s shown in figure 5 and tests of 
the effects of varying mean velocity, the mesh size, the diffusivity of the scalar 
(through the use of temperature decay) and the injection rate, indicated the 
following scalar decay law - eye; = 3 . 1 0 ( ~ / ~ ) - 8  (20) 
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for the range of variable encountered in the present system. In ( 2 0 ) ,  8, is the 
increment in the mean value B of the scalar Auid property @(t) = a + 6(t)  of 
the main stream, caused by the injection of concentrated scalar as it passes 
through the grid. The apparent origin of the scalar field did not seem to differ 
significantly from x = 0. 

"lM 
FIGURE 5. Decay of concentration fluctuations behind grid. 

ReM = 10,200; i? = 0.26 %; C ,  = 5.8 %; M = 1.59cm. 

Hinze (1959, p. 236)  shows that by assuming (1) self-preservation of the 
correlation coefficient,f,(r) = 8(x) 8(x + r)/d2, and ( 2 )  that the Corrsin parameter, 

I c  = s"i = IOm r"fs(r) dr, is invariant, the decay of scalar variance in the initial 

period of the turbulence (x /M < 200)  is proportional to t-3, where t is the time 
of decay. For this reason, the 3 versus x/N data of figure 5 were plotted as 
( 3 - 8  versus x / M ,  and the straight line seems to be compatible with the data. 

- _  

- 

With ( 2 ) ,  and using x = Ut, the dissipation rate may be calculated 

where the subscript of xD indicates that x is computed from the decay law. The 
dissipation rate may also be computed by integrating the 'dissipation spectrum ' 
k:f$,(kl) for a given measurement of the scalar spectrum (Hinze 1959, p. 227)  
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The ratio of these two expressions for the dissipation is 

(23) 

Since the integral of the dissipation spectrum is very sensitive to the spectral 
values at high wave-numbers, equation (33) provides a powerful check on the 
accuracy of the high wave-number portion of the measured spectrum, where 
errors due to inadequate spatial resolution of the conductivity probes might 
be expected. 

6. Results 
Table 1 shows the operating conditions for six concentration-mixing runs and 

one temperature-mixing run during which the spectra shown in figure 6 were 
measured. The basic data measured for these plots were $H(k l ) /@ since normal- 

Run 
CM 1 
CM 12 
CM 13 
CM 15 
CM 16 
CM 17 
TM 2 

Mean 
velocity 

U 
(cmjsec) 

64 
127 
240 
125 
153 
155 
125 

Grid 
mesh 

M 
(em) 
1-588 
2.62 
2.62 
2.62 
1.588 
1.588 
2-62 

Distance 
from 
grid 

70 
19.5 
19.5 
19-5 
64.5 
19.5 
19.5 

"lM 
B 

(wt. Yo) 
0.1 
0.293 
0-305 
0.309 
0-328 
0.366 
0.309 

c, Q 
(dsec) 
0.798 
0.355 
0.355 
0.355 
0.366 
0.366 
0 

UM 
~ 

V 

11,700 
35,000 
65,550 
35,300 
26,200 
26,500 
35,300 

D* 
(CL) 

50 
13.9 
13.1 
52.8 
35.5 
38 
52-8 

TABLE 1. Operating conditions for experimental runs 
- 
C = background concentration 

Q = injection rate 

k8 = Rolmogoroff wave-number 

GI = injected concentration 

D, = apparent diameter of electrode = (2n x cell constant)-l 

k, 
(cm-I) 

29.5 
102 
165 
97.1 
55.7 

133.5 
97-1 

izing each spectral point compensates for variations in either sensitivity or signal 
level. Normalized spectra were computed using (31) and k, = 1/q computed 

Also plotted in figure 6 is the universal velocity spectrum of figure 3, q5(kl) k31/s 
versus E,lk, for comparison with the scalar spectra. 

Batchelor's theoretical prediction of the three-dimensional spectrum function 
F(k)  may be converted to the one-dimensional spectrum function $o(kl) using the 
relation (Hinze 1959, equation 3-187) 

with 
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where q is a constant to be determined. Substitute 
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where @(x) is the normal probability density function 

@(x) = 2n-lexp ( - *x2)>- 
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FIGURE 6. Normalized. scalar mixing spectra. 
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From tabulated values of @(x) and @(y) dy, the theoretical spectra for con- 

centration and temperature mixing were computed and are shown plotted in 
figure 6. 

Several interesting features may be noted from figure 6. First, all the scalar- 
mixing spectra appear to exhibit the universal inertial and viscous-convective 

c 
I I I 

I I 

lo-' 10-1 rooa 
W* 

FIGURE 7. Scalar inertial subrange. 

subranges predicted using scalar-mixing similarity hypotheses and local isotropy 
(figure 4 (b)). Sighting along the inertial subrange with the eye close to the paper 
will reveal the inflexion in the spectra as the mixing mechanism becomes pure 
strain after the viscous cut-off of the velocity spectrum. Second, the high wave- 
number concentration-mixing spectra scatter considerabIy and all lie below 
Batchelor's theoretical curve. Computations of the dissipation rates from the 
various spectra using (23) give xslxD ratios ranging between 1 : 20 and 1 : 200, 
clearly indicating that the measured high wave-number concentration-mixing 
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spectra are low due to the inability of the conductivity probes to resolve some of 
the extremely fine concentration fluctuations encountered. For example, for 
CM 13 the wavelength corresponding to the wave-number above 90 yo of the 
dissipation is about 7 ,u. Nevertheless, the high wave-number concentration- 

1 o2 

x 10' 

g 
s 

. 2 
mu. * 

w^ 
\ a 

Lou. 
22 
h *- 

loo 

1 n--1 

I 

1" 

lo-' loo 10' 
k l l k  

FIGURE 8. Viscous-convective subrange. 

mixing spectra are considerably above the velocity and temperature-mixing 
spectra, and the six absolute spectra shown in figure 6 and eleven other quali- 
tative spectra (Gibson 1962) measured in the course of the experiment are 
consistent with the predicted viscous-convective slope of - 1. 

The scalar-mixing spectra which exhibited inertial subranges are shown in 
figure 7 with arbitrary spectral scales to separate data for the different runs. The 
best fitting - $ line was drawn through the inertial subranges of each of the six 
spectra and the corresponding scalar one-dimensional Kolmogoroff constants 
p = ( q 5 e k ; : ~ / ~ )  ( Ic l /ks )~  were calculated and are shown on figure 7. The average 
value was 0.35 & 0.05 standard deviation. The equivalent three-dimensional 
constant 

is 0.58. The most extensive inertial subrange was exhibited by run CM 13, taken 
at Renl = 67,000, where the -% slope portion of the spectrum extended over a 
decade of wave-numbers. For reference, the -Q inertial subrange lines of the 

p 3  = QA = W )  ( W X ) ,  
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various spectra are extended a t  high wave-number by Batchelor’s spectrum 
(v /D = 700). 

The viscous-convective regions of the concentration-mixing spectra are shown 
compared to Batchelor’s theory and the universal velocity spectrum in figure 8. 
All the spectra except CM 15 are in reasonable agreement with Batchelor’s 

I 

0 TM2 

,, Possibly affected by noise 
and/or spatial resolution 

\ 

I 1 

1 0 - ~  10-2 10-1 100 

(DglVP ( W k J  

FIGURE 9. Diffusive subrange. 

curve. The largest measured values of kJkS which were unaffected by spatial 
resolution were obtained for runs C M l  and C M l 6  which were also taken at  
larger values of x /M than the other runs, 70 and 64.5, respectively, so their 
Kolmogoroff numbers should be more accurate than the others which were taken 
at x /M values of only about 19.5. The agreement of CM16 and CM1 with 
Batchelor’s theory is to within about 

Figure 9 is a plot of the normalized scalar mixing ( D / v  < 1) and velocity 
spectra plotted in the manner suggested by Kolmogoroff-like similarity hypo- 
theses as discussed previously and illustrated in figure 4 (b). Batchelor’s spectrum 
is shown extended to lower wave numbers by a line of slope - 1 corresponding 

5 yo. 
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to scalars with nearly zero diffusivity. As expected from figures 4 (b) ,  the - $ 
slope inertial subrange lines for the concentration and temperature spectra 
intersect the v /D+m line at different points due to the difference in their 
diffusivity ratios v/D, which were 700 and 7, respectively. The temperature- 
mixing data of run T M 2  are plotted for comparison with Batchelor's theory. 
As indicated, some of the high wave-number data may have been affected by 
noise and/or spatial resolution since the signal level was only (AT2)& = 0.005 "C 
(signal-to-noise ratio = 5 ;  AT, = Bo = 0.03 "C). 

__- 
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Data extended using 
Batchelor's theory 

- 

0 
0 500 1000 1500 2000 2500 

k ,  (em-l) - .  

FIGURE 10. Dissipation spectra. 

To illustrate the sensitivity of the dissipation ratio xSlxD to various extra- 
polations of the high wave-number data, as well as to check the compatibility 
of the one-dimensional spectrum of equation (27) with the requirement that 
xs = xD, the dissipation spectra for run CM16 were derived. The actual data 
were extrapolated to high wave-number using both the velocity and Batchelor's 
spectrum, the dissipation spectra $ c ( k l ) / s  were plotted for the data, the velocity 
extension and Batchelor's extension and the ratios %/xD were found to be 0.05, 
0.36 and 1.12, respectively (see figure 10). The low value for the raw data demon- 
strates the failure of the conductivity probes to resolve the smallest fluctuations 
of concentration. Also, the 0.36 value obtained by extending the scalar spectrum 
by using the form of the velocity spectrum indicates the incorrectness of this 
approach. Computations for CM 13 and TM 2 gave xs/xD values of 0.99 and 0.96, 
respectively, for the Batchelor extension. 
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5. Conclusions General 
The hypothesis that the small-scale fluctuations of turbulent velocity and scalar 
fields are statistically independent of the details of the large-scale fluctuations 
from which they are generated was tested by comparing absolute measurements 
of velocity and scalar spectra after co-ordinate transformations to length, 
scalar and time scales formed from the diffusivities (v/D) and dissipation rates 
(./x) of the velocity and scalar fields. 

The local-isotropy similarity-hypothesis prediction of inertial subranges with 
velocity and scalar spectra proportional to wave-number to the -+ power was 
demonstrated experimentally, as well as a viscous-convective subrange in the 
scalar spectrum proportional to wave-number to the - 1 power. Based on these 
successful predictions from local-isotropy theory and Kolmogoroff-like similarity 
hypotheses, the curves to which the measured spectra reduce after co-ordinate 
transformation appear to be universal equilibrium spectra for turbulent velocity 
and scalar fields. Absolute measurements of transverse spectra would provide 
valuable further comparison, but none seem to be available. 

Velocity jield 
(1)  The velocity spectra measured in the water tunnel, when normalized using 

the dissipation rate indicated by Batchelor & Townsend's decay law, were in 
agreement with grid turbulence spectra measured in wind tunnels by Stewart 
& Townsend. The agreement is taken as an indication that the dissipation rate 
used was correct, that the hot-film anemometer was a satisfactory device for 
measuring turbulence in water, and that the spectra of the flow fields in water 
and air were similar. 

( 2 )  The agreement of the transformed spectra for grid turbulence in air and 
water with turbulent spectra measured in the ocean supports the conclusion 
that for the highest range of wave numbers the spectrum function shown in 
figure 3 is universal. Grant et al. (1962) found that the normalized dissipation 
spectrum for their data was in agreement with normalized dissipation spectra 
taken in shear flow systems. 

(3) The universal one-dimensional Kolmogoroff constant for the inertial 
subrange indicated by the velocity measurements in the water tunnel was 
cx1 = 0.44 & 0.02, corresponding to a three-dimensional constant a3 = 1.34 0.06. 

Sca,lar Jield 
( 1 )  A technique was developed capable of measuring R.M.S. conductivity 

fluctuations as low as 0.003 yo (signal-to-noise ratio of one), corresponding to 
c'lC = 0.003 % or t' = 0.001 "C. The maximum spatial resolution was obtained 
with a 10 p electrode probe whose response was down 3 dB at a wave-number of 
about 150 cm-l, equivalent to a wavelength of 0.4mm (CM 13). 

( 2 )  The decay of scalar variance behind the grid was found to obey the 
following equation 

= 3*10(x/M)-;-, 
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where 8 is the fluctuating component of the scalar field, 8, is the change in the 
mean value of 0 for the fluid as it passes .through the grid, x is the distance from 
the grid, and M is the mesh length. The relation was tested for concentration and 
temperature mixing, x /M values between 20 and 80, mean velocities from 60 
to 2lOcm/sec, co/C values from to 1 %, and for M values of 1-59 and 2.62 em. 

(3) The transformed scalar spectra indicated a universal scalar inertial Kolmo- 
goroff constant pl = 0.35 or p3 = 0.58. The transformed concentration-mixing 
spectra exhibited viscous-convective subranges with universal scalar viscous- 
convective Kolmogoroff constant 

in agreement with Batchelor's recommended value of the effective average least 
principal rate of strain y = - 1/2(s/v)*, 

(4) By comparing the dissipation rates ( x )  indicated by the measured spectra 
with those calculated from the scalar decay law, it was concluded that the 
spectral measurements at high wave-number were affected by inadequate 
spatial resolution of the conductivity probes. The actual spectrum must be a 
smooth extrapolation of the measured data obeying the restriction xs = xD; 
Batchelor's prediction of the universal equilibrium scalar spectrum is consistent 
with the experimental data for at least the range of wave-numbers shown in 
figure 9. 
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FIGURE 2 (a).  10 p single-electrode conductivity probe; (a )  probe; ( b )  probe tip. 
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FIGURE 2 ( b ) .  For legend see plat,e 1. 
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